Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
2.
EMBO Mol Med ; 15(11): e17973, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37800682

RESUMO

The brittle hair syndrome Trichothiodystrophy (TTD) is characterized by variable clinical features, including photosensitivity, ichthyosis, growth retardation, microcephaly, intellectual disability, hypogonadism, and anaemia. TTD-associated mutations typically cause unstable mutant proteins involved in various steps of gene expression, severely reducing steady-state mutant protein levels. However, to date, no such link to instability of gene-expression factors for TTD-associated mutations in MPLKIP/TTDN1 has been established. Here, we present seven additional TTD individuals with MPLKIP mutations from five consanguineous families, with a newly identified MPLKIP variant in one family. By mass spectrometry-based interaction proteomics, we demonstrate that MPLKIP interacts with core splicing factors and the lariat debranching protein DBR1. MPLKIP-deficient primary fibroblasts have reduced steady-state DBR1 protein levels. Using Human Skin Equivalents (HSEs), we observed impaired keratinocyte differentiation associated with compromised splicing and eventually, an imbalanced proteome affecting skin development and, interestingly, also the immune system. Our data show that MPLKIP, through its DBR1 stabilizing role, is implicated in mRNA splicing, which is of particular importance in highly differentiated tissue.


Assuntos
Síndromes de Tricotiodistrofia , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Consanguinidade , Mutação , Fenótipo , Splicing de RNA , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/metabolismo
3.
Cells ; 12(14)2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37508541

RESUMO

Mutations in a broad variety of genes can provoke the severe childhood disorder trichothiodystrophy (TTD) that is classified as a DNA repair disease or a transcription syndrome of RNA polymerase II. In an attempt to identify the common underlying pathomechanism of TTD we performed a knockout/knockdown of the two unrelated TTD factors TTDN1 and RNF113A and investigated the consequences on ribosomal biogenesis and performance. Interestingly, interference with these TTD factors created a nearly uniform impact on RNA polymerase I transcription with downregulation of UBF, disturbed rRNA processing and reduction of the backbone of the small ribosomal subunit rRNA 18S. This was accompanied by a reduced quality of decoding in protein translation and the accumulation of misfolded and carbonylated proteins, indicating a loss of protein homeostasis (proteostasis). As the loss of proteostasis by the ribosome has been identified in the other forms of TTD, here we postulate that ribosomal dysfunction is a common underlying pathomechanism of TTD.


Assuntos
Síndromes de Tricotiodistrofia , Humanos , Criança , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Mutação/genética , RNA Polimerase I/metabolismo , Proteínas/metabolismo , Proteínas de Ligação a DNA/metabolismo
4.
Mol Cell ; 83(13): 2258-2275.e11, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37369199

RESUMO

The pre-mRNA life cycle requires intron processing; yet, how intron-processing defects influence splicing and gene expression is unclear. Here, we find that TTDN1/MPLKIP, which is encoded by a gene implicated in non-photosensitive trichothiodystrophy (NP-TTD), functionally links intron lariat processing to spliceosomal function. The conserved TTDN1 C-terminal region directly binds lariat debranching enzyme DBR1, whereas its N-terminal intrinsically disordered region (IDR) binds the intron-binding complex (IBC). TTDN1 loss, or a mutated IDR, causes significant intron lariat accumulation, as well as splicing and gene expression defects, mirroring phenotypes observed in NP-TTD patient cells. A Ttdn1-deficient mouse model recapitulates intron-processing defects and certain neurodevelopmental phenotypes seen in NP-TTD. Fusing DBR1 to the TTDN1 IDR is sufficient to recruit DBR1 to the IBC and circumvents the functional requirement for TTDN1. Collectively, our findings link RNA lariat processing with splicing outcomes by revealing the molecular function of TTDN1.


Assuntos
Síndromes de Tricotiodistrofia , Animais , Camundongos , Íntrons/genética , Síndromes de Tricotiodistrofia/genética , RNA Nucleotidiltransferases/genética , Splicing de RNA
5.
JAMA Dermatol ; 159(8): 877, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37342013

RESUMO

This case report describes an infant with frizzy, coarse, and fragile hair and low-set ears, blepharophimosis, and osteopenia.


Assuntos
Doenças do Cabelo , Síndromes de Tricotiodistrofia , Humanos , Síndromes de Tricotiodistrofia/diagnóstico , Síndromes de Tricotiodistrofia/genética , Cabelo , Enxofre , Doenças do Cabelo/diagnóstico
6.
Clin Genet ; 104(5): 604-606, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37356817

RESUMO

We report a newborn patient with trichothiodystrophy-3 (TTD3) caused by a novel homozygous variant in the GTF2H5 gene. His severe phenotype included congenital ichthyosis, complex posterior cranial fossa anomaly, life-threatening infections, bilateral cryptorchidism, and, notably, a complex cardiac malformation, which is unprecedented in TTD3 patients.


Assuntos
Síndromes de Tricotiodistrofia , Humanos , Recém-Nascido , Masculino , Homozigoto , Fenótipo , Fatores de Transcrição/genética , Síndromes de Tricotiodistrofia/genética
7.
J Hum Genet ; 68(6): 437-443, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36810639

RESUMO

Among genodermatoses, trichothiodystrophies (TTDs) are a rare genetically heterogeneous group of syndromic conditions, presenting with skin, hair, and nail abnormalities. An extra-cutaneous involvement (craniofacial district and neurodevelopment) can be also a part of the clinical picture. The presence of photosensitivity describes three forms of TTDs: MIM#601675 (TTD1), MIM#616390 (TTD2) and MIM#616395 (TTD3), that are caused by variants afflicting some components of the DNA Nucleotide Excision Repair (NER) complex and with more marked clinical consequences. In the present research, 24 frontal images of paediatric patients with photosensitive TTDs suitable for facial analysis through the next-generation phenotyping (NGP) technology were obtained from the medical literature. The pictures were compared to age and sex-matched to unaffected controls using 2 distinct deep-learning algorithms: DeepGestalt and GestaltMatcher (Face2Gene, FDNA Inc., USA). To give further support to the observed results, a careful clinical revision was undertaken for each facial feature in paediatric patients with TTD1 or TTD2 or TTD3. Interestingly, a distinctive facial phenotype emerged by the NGP analysis delineating a specific craniofacial dysmorphic spectrum. In addition, we tabulated every single detail within the observed cohort. The novelty of the present research includes the facial characterization in children with the photosensitive types of TTDs through the 2 different algorithms. This result can become additional criteria for early diagnosis, and for subsequent targeted molecular investigations as well as a possible tailored multidisciplinary personalized management.


Assuntos
Transtornos de Fotossensibilidade , Síndromes de Tricotiodistrofia , Humanos , Síndromes de Tricotiodistrofia/diagnóstico , Síndromes de Tricotiodistrofia/genética , Transtornos de Fotossensibilidade/diagnóstico , Transtornos de Fotossensibilidade/genética , Face , Cabelo , Fenótipo , Reparo do DNA
8.
Hum Mol Genet ; 32(7): 1102-1113, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36308430

RESUMO

TFIIH is a complex essential for transcription of protein-coding genes by RNA polymerase II, DNA repair of UV-lesions and transcription of rRNA by RNA polymerase I. Mutations in TFIIH cause the cancer prone DNA-repair disorder xeroderma pigmentosum (XP) and the developmental and premature aging disorders trichothiodystrophy (TTD) and Cockayne syndrome. A total of 50% of the TTD cases are caused by TFIIH mutations. Using TFIIH mutant patient cells from TTD and XP subjects we can show that the stress-sensitivity of the proteome is reduced in TTD, but not in XP. Using three different methods to investigate the accuracy of protein synthesis by the ribosome, we demonstrate that translational fidelity of the ribosomes of TTD, but not XP cells, is decreased. The process of ribosomal synthesis and maturation is affected in TTD cells and can lead to instable ribosomes. Isolated ribosomes from TTD patients show an elevated error rate when challenged with oxidized mRNA, explaining the oxidative hypersensitivity of TTD cells. Treatment of TTD cells with N-acetyl cysteine normalized the increased translational error-rate and restored translational fidelity. Here we describe a pathomechanism that might be relevant for our understanding of impaired development and aging-associated neurodegeneration.


Assuntos
Síndromes de Tricotiodistrofia , Xeroderma Pigmentoso , Humanos , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Reparo do DNA/genética , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/patologia , Mutação , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/patologia , Ribossomos/genética , Ribossomos/metabolismo
11.
Hum Mutat ; 43(12): 2222-2233, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36259739

RESUMO

Trichothiodystrophy (TTD) is a rare hereditary disease whose prominent feature is brittle hair. Additional clinical signs are physical and neurodevelopmental abnormalities and in about half of the cases hypersensitivity to UV radiation. The photosensitive form of TTD (PS-TTD) is most commonly caused by mutations in the ERCC2/XPD gene encoding a subunit of the transcription/DNA repair complex TFIIH. Here we report novel ERCC2/XPD mutations affecting proper protein folding, which generate thermo-labile forms of XPD associated with thermo-sensitive phenotypes characterized by reversible aggravation of TTD clinical signs during episodes of fever. In patient cells, the newly identified XPD variants result in thermo-instability of the whole TFIIH complex and consequent temperature-dependent defects in DNA repair and transcription. Improving the protein folding process by exposing patient cells to low temperature or to the chemical chaperone glycerol allowed rescue of TFIIH thermo-instability and a concomitant recovery of the complex activities. Besides providing a rationale for the peculiar thermo-sensitive clinical features of these new cases, the present findings demonstrate how variations in the cellular concentration of mutated TFIIH impact the cellular functions of the complex and underlie how both quantitative and qualitative TFIIH alterations contribute to TTD clinical features.


Assuntos
Doenças do Cabelo , Dermatopatias , Síndromes de Tricotiodistrofia , Xeroderma Pigmentoso , Humanos , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/complicações , Reparo do DNA , Doenças do Cabelo/genética , Transcrição Gênica , Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo
12.
Am J Med Genet A ; 188(12): 3448-3462, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36103153

RESUMO

Trichothiodystrophy (TTD) is a rare, autosomal recessive, multisystem disorder of DNA repair and transcription with developmental delay and abnormalities in brain, eye, skin, nervous, and musculoskeletal systems. We followed a cohort of 37 patients with TTD at the National Institutes of Health (NIH) from 2001 to 2019 with a median age at last observation of 12 years (range 2-36). Some children with TTD developed rapidly debilitating hip degeneration (DHD): a distinctive pattern of hip pain, inability to walk, and avascular necrosis on imaging. Ten (27%) of the 37 patients had DHD at median age 8 years (range 5-12), followed by onset of imaging findings at median age 9 years (range 5-13). All 10 had mutations in the ERCC2/XPD gene. In 7 of the 10 affected patients, DHD rapidly became bilateral. DHD was associated with coxa valga, central osteosclerosis with peripheral osteopenia of the skeleton, and contractures/tightness of the lower limbs. Except for one patient, surgical interventions were generally not effective at preventing DHD. Four patients with DHD died at a median age of 11 years (range 9-15). TTD patients with ERCC2/XPD gene mutations have a high risk of musculoskeletal abnormalities and DHD leading to poor outcomes. Monitoring by history, physical examination, imaging, and by physical medicine and rehabilitation specialists may be warranted.


Assuntos
Doenças Ósseas Metabólicas , Contratura , Coxa Valga , Osteonecrose , Osteosclerose , Síndromes de Tricotiodistrofia , Criança , Humanos , Pré-Escolar , Adolescente , Adulto Jovem , Adulto , Síndromes de Tricotiodistrofia/diagnóstico , Síndromes de Tricotiodistrofia/genética , Coxa Valga/complicações , Mutação , Contratura/genética , Contratura/complicações , Doenças Ósseas Metabólicas/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética
13.
Stem Cell Res ; 64: 102885, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35944311

RESUMO

Trichothiodystrophy 1 (TTD1) is a rare, autosomal recessive, multisystem disorder characterized by the sulfur-deficient brittle hair, cutaneous photosensitivity, high risk of skin cancer, psychomotor retardation. TTD1 is caused by homozygous or compound heterozygous mutation in ERCC2 gene. The peripheral blood mononuclear cells (PBMCs) from a patient carrying two heterozygous missense mutations of the ERCC2 gene were reprogrammed using the CytoTune-iPS2.0 Sendai Reprogramming Kit. The putative compound heterozygous mutation in ERCC2 will cause the abnormal protein, which is known to associated with TTD1. The established human induced pluripotent cell (hiPSC) line will enable proper in vitro disease modelling of TTD1.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndromes de Tricotiodistrofia , Humanos , Síndromes de Tricotiodistrofia/genética , Mutação de Sentido Incorreto , Leucócitos Mononucleares , Enxofre , Proteína Grupo D do Xeroderma Pigmentoso/genética
14.
Exp Dermatol ; 31(8): 1270-1275, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35615778

RESUMO

Hair shafts from three trichothiodystrophy (TTD) patients with mutations in the ERCC2 (XPD) gene were examined by transmission electron microscopy. TTD is a rare, recessive disorder with mutations in several genes in the DNA repair/transcription pathway, including ERCC2. Unlike previous studies, the hair shafts were examined after relaxation of their structure by partial disulphide bond reduction in the presence of sodium dodecyl sulphate, permitting improved visualization. Compared with hair shafts of normal phenotype, TTD cuticle cells displayed aberrant marginal bands and exocuticle layers. Clusters of cells stained differently (light versus dark) in the cortex of aberrant shafts, and the keratin macrofibrils appeared much shorter in the cytoplasm. Considerable heterogeneity in these properties was evident among samples and even along the length of single hair shafts. The results are consistent with not only a paucity of high sulphur components, such as keratin-associated proteins, but also a profound imbalance in protein content and organization.


Assuntos
Doenças do Cabelo , Síndromes de Tricotiodistrofia , Reparo do DNA , Cabelo/metabolismo , Doenças do Cabelo/genética , Doenças do Cabelo/metabolismo , Humanos , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/metabolismo , Raios Ultravioleta , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo
15.
Pediatrics ; 148(4)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34593652

RESUMO

A teenage girl had the rare combined phenotype of xeroderma pigmentosum and trichothiodystrophy, resulting from mutations in the XPD (ERCC2) gene involved in nucleotide excision repair (NER). After treatment with antibiotics, including metronidazole for recurrent infections, she showed signs of acute and severe hepatotoxicity, which gradually resolved after withdrawal of the treatment. Cultured skin fibroblasts from the patient revealed cellular sensitivity to killing by metronidazole compared with cells from a range of other donors. This reveals that the metronidazole sensitivity was an intrinsic property of her cells. It is well recognized that patients with Cockayne syndrome, another NER disorder, are at high risk of metronidazole-induced hepatotoxicity, but this had not been reported in individuals with other NER disorders. We would urge extreme caution in the use of metronidazole in the management of individuals with the xeroderma pigmentosum and trichothiodystrophy overlap or trichothiodystrophy phenotypes.


Assuntos
Antibacterianos/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Metronidazol/efeitos adversos , Síndromes de Tricotiodistrofia/complicações , Xeroderma Pigmentoso/complicações , Adolescente , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Mutação , Síndromes de Tricotiodistrofia/genética , Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética
16.
Nucleic Acids Res ; 49(19): 11197-11210, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34581812

RESUMO

Ribosome biogenesis is a highly energy-demanding process in eukaryotes which requires the concerted action of all three RNA polymerases. In RNA polymerase II transcription, the general transcription factor TFIIH is recruited by TFIIE to the initiation site of protein-coding genes. Distinct mutations in TFIIH and TFIIE give rise to the degenerative disorder trichothiodystrophy (TTD). Here, we uncovered an unexpected role of TFIIE in ribosomal RNA synthesis by RNA polymerase I. With high resolution microscopy we detected TFIIE in the nucleolus where TFIIE binds to actively transcribed rDNA. Mutations in TFIIE affects gene-occupancy of RNA polymerase I, rRNA maturation, ribosomal assembly and performance. In consequence, the elevated translational error rate with imbalanced protein synthesis and turnover results in an increase in heat-sensitive proteins. Collectively, mutations in TFIIE-due to impaired ribosomal biogenesis and translational accuracy-lead to a loss of protein homeostasis (proteostasis) which can partly explain the clinical phenotype in TTD.


Assuntos
Nucléolo Celular/genética , Regulação da Expressão Gênica , Biogênese de Organelas , Fator de Transcrição TFIIH/genética , Fatores de Transcrição TFII/genética , Síndromes de Tricotiodistrofia/genética , Linhagem Celular Transformada , Nucléolo Celular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Genes Reporter , Temperatura Alta , Humanos , Luciferases/genética , Luciferases/metabolismo , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas , Estabilidade Proteica , Proteostase/genética , RNA Polimerase I/genética , RNA Polimerase I/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição TFII/deficiência , Transcrição Gênica , Síndromes de Tricotiodistrofia/metabolismo , Síndromes de Tricotiodistrofia/patologia
18.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34155103

RESUMO

The cancer-free photosensitive trichothiodystrophy (PS-TTD) and the cancer-prone xeroderma pigmentosum (XP) are rare monogenic disorders that can arise from mutations in the same genes, namely ERCC2/XPD or ERCC3/XPB Both XPD and XPB proteins belong to the 10-subunit complex transcription factor IIH (TFIIH) that plays a key role in transcription and nucleotide excision repair, the DNA repair pathway devoted to the removal of ultraviolet-induced DNA lesions. Compelling evidence suggests that mutations affecting the DNA repair activity of TFIIH are responsible for the pathological features of XP, whereas those also impairing transcription give rise to TTD. By adopting a relatives-based whole transcriptome sequencing approach followed by specific gene expression profiling in primary fibroblasts from a large cohort of TTD or XP cases with mutations in ERCC2/XPD gene, we identify the expression alterations specific for TTD primary dermal fibroblasts. While most of these transcription deregulations do not impact on the protein level, very low amounts of prostaglandin I2 synthase (PTGIS) are found in TTD cells. PTGIS catalyzes the last step of prostaglandin I2 synthesis, a potent vasodilator and inhibitor of platelet aggregation. Its reduction characterizes all TTD cases so far investigated, both the PS-TTD with mutations in TFIIH coding genes as well as the nonphotosensitive (NPS)-TTD. A severe impairment of TFIIH and RNA polymerase II recruitment on the PTGIS promoter is found in TTD but not in XP cells. Thus, PTGIS represents a biomarker that combines all PS- and NPS-TTD cases and distinguishes them from XP.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Neoplasias/patologia , Síndromes de Tricotiodistrofia/enzimologia , Animais , Células Cultivadas , Sistema Enzimático do Citocromo P-450/genética , Epoprostenol , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibroblastos/efeitos da radiação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos da radiação , Camundongos , Pele/patologia , Transcrição Gênica , Síndromes de Tricotiodistrofia/genética , Raios Ultravioleta , Xeroderma Pigmentoso/genética
20.
Hum Mol Genet ; 30(18): 1711-1720, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-33909043

RESUMO

Trichothiodystrophy (TTD) is a rare hereditary neurodevelopmental disorder defined by sulfur-deficient brittle hair and nails and scaly skin, but with otherwise remarkably variable clinical features. The photosensitive TTD (PS-TTD) forms exhibits in addition to progressive neuropathy and other features of segmental accelerated aging and is associated with impaired genome maintenance and transcription. New factors involved in various steps of gene expression have been identified for the different non-photosensitive forms of TTD (NPS-TTD), which do not appear to show features of premature aging. Here, we identify alanyl-tRNA synthetase 1 and methionyl-tRNA synthetase 1 variants as new gene defects that cause NPS-TTD. These variants result in the instability of the respective gene products alanyl- and methionyl-tRNA synthetase. These findings extend our previous observations that TTD mutations affect the stability of the corresponding proteins and emphasize this phenomenon as a common feature of TTD. Functional studies in skin fibroblasts from affected individuals demonstrate that these new variants also impact on the rate of tRNA charging, which is the first step in protein translation. The extension of reduced abundance of TTD factors to translation as well as transcription redefines TTD as a syndrome in which proteins involved in gene expression are unstable.


Assuntos
Alanina-tRNA Ligase/genética , Metionina tRNA Ligase/genética , Síndromes de Tricotiodistrofia/genética , Alanina-tRNA Ligase/metabolismo , Criança , Estabilidade Enzimática/genética , Feminino , Humanos , Metionina tRNA Ligase/metabolismo , Síndromes de Tricotiodistrofia/enzimologia , Síndromes de Tricotiodistrofia/patologia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...